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LE'ITER TO THE EDITOR 

Quantum electrodynamic formulation of the Josephson 
tunnelling theory 
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t Physics Department, Northeastern University, Boston, Massachusetts, 021 15, USA 
$ Physics Laboratory, University of Sussex, Brighton, Sussex, England 

Received 24 August 1982 

Abstract. The local ground state polarisation (complex) Schwinger Lagrangian is given 
corresponding to the Josephson theory of tunnelling in a junction capacitor. In the 
quantum electrodynamic theory there are two regimes of interest: (i) for voltages small 
on the scale of the gap lev/ <2A, the motion is that of a 'quantum pendulum' with no 
dissipative damping; (ii) for voltages large on the scale of the gap (eV(  > 2A, a finite shunt 
conductance is 'turned on' describing the dielectric breakdown of the junction capacitor. 

In a classic paper on vacuum polarisation (Schwinger 1951) the rules were given for 
constructing the nonlinear electromagnetic local Lagrangian obtained after ground 
state averaging over electronic degrees of freedom. In a quantum electrodynamic 
circuit element (Widom 1979) the local Schwinger Lagrangian describes the electro- 
dynamic degrees of freedom via the flux coordinate @ and the Faraday law voltage 
across the element 

V = -(d@/c dr). (1) 

2?( V, @) = L(-cV, (D) + (ih/2)r( V, @), (2) 

where the real part L(&, @) determines quantum interference of amplitudes (as does 
any other real Lagrangian), while r describes the transition rate per unit time of 
achieving a real excitation of the electronic degrees of freedom. 

Our purpose is to discuss the physical meaning of the Schwinger Lagrangian for 
the special case of a tunnelling junction in the Josephson theory, i.e. when the action 
is computed to second order in the one-electron tunnelling amplitudes assumed real 
(Ambegaokar er a1 1982). We differ from Ambegaokar et a1 in one very important 
respect to be discussed in what follows (Werthamer 1966). 

The Schwinger Lagrangian corresponding to the Josephson theory is given by 

The Schwinger (ground state) Lagrangian has the complex form 

=Y( V, @) = $E (6" + iO+)CV2 + hv cos(2e a / h c  ), (3) 
where v is the electron pair tunnelling frequency, C is the geometrical junction 
capacitance, 

3" = (eV/h) (4) 
and E (5) is the normal current dielectric response function whose physical significance 
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is as follows. In an engineering circuit picture (Likharev 1979) the geometrical capaci- 
tance C is shunted by a normal current channel admittance Y,,(t) .  Adding admittances 
in parallel yields the effective capacitance Ce&) such that 

-iYC,db) = -i5C + Yn(5), Ceff(5) = E (W. (5a, 6 )  

Since normal current excitations can be real only if Aw > 2A, and are certainly 
'virtual' if Rw < 2A, it follows that the normal current channel admittance obeys 

Re Y,, (w +io') = 0, Aw 2A, (6 )  

where A is the superconducting gap. 

Theorem 1. If the voltage across the junction is small on the scale of the superconduct- 
ing gap A, then the transition rate for dissipative electronic excitation vanishes, i.e. 

r(/eVI<2A)=O. (7) 

Proof. From equations (2), (3) and (5 ) ,  the power dissipated in the junction is 

hGvr(V) = V2 Re Y,,(Wv +io'). 

Hence, equation (7) holds by virtue of equations (6) and (8). 

(8) 

When described in terms of the normal shunt conductance 

G ( V) = Re Y,, (GV + io+), (9) 
one notes that G( V) 'shuts off' when 1 VI < (2A/e) and 'turns on' when 1 VI > (2A/e). 
A simplified resistively shunted junction model holds that G(V) is independent of 
voltage (Leggett 1980). 

Ambegaokar et a1 show that a form of resistively shunted junction model can arise 
from an approximation to the action. However, the fact that G( V) can turn on and 
off, as described above, appears to us to invalidate their approximation scheme as 
regards laboratory use of the Josephson theory. 

Theorem 2. For flux paths @(t)  such that Ib(t)l< 2cA/e, the amplitudes are weighted 
by a real non-dissipative Lagrangian path integral 

DO exp(i/A) I L ( b ,  0) dt. 

Proof. Equation (10) follows directly from equations (l), (2), (3) and (7). 

Hence, when the voltage is small on the scale of the superconducting gap, the 

(11) 
provides an adequate description of junction dynamics. In equation (ll),  E(Q) is 
defined so that 

macroscopic Schrodinger equation 

i A  W(@, t ) /at  =[E(Q =ihc a /a@)-hv  cos(2e@/hc)]I,b(@, t )  

V = dE(Q)/dQ 

Q = (d/d V)[$CV* - ( A  V/2e) Im Yn (6" + io')] 
and 
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yield the same equation of state for the junction capacitor ‘charge-voltage’ relation, 
when the shunt conductance is ‘turned off’, i.e. when there is no dielectric breakdown 
of the capacitor. 

Let us now compare the consequences of Schwinger’s Lagrangian for vacuum 
polarisation with the consequences of the quantum electrodynamic formulation of the 
Josephson theory. When a few electrons in the vacuum produce electric fields too 
weak for vacuum dielectric breakdown, i.e. the production of real electron-positron 
pairs, then a simple Schrodinger equation is an adequate treatment of dynamics. 
Similarly, if the electrons in a tunnelling junction produce voltages too weak to induce 
capacitor dielectric breakdown, i.e. the production of real dissipative normal currents, 
then a simple Schrodinger equation (1 1) provides an adequate description. 

Finally, for such weak voltages Q = CV; this implies for the Heisenberg equation 
of motion (corresponding to equation (11)) that 

where e = 2 e @ / h c  and u; = 4 e 2 v / h c .  Thus, the simple Josephson pendulum is 
recovered as would be expected. 
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